If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+14c=32
We move all terms to the left:
c^2+14c-(32)=0
a = 1; b = 14; c = -32;
Δ = b2-4ac
Δ = 142-4·1·(-32)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-18}{2*1}=\frac{-32}{2} =-16 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+18}{2*1}=\frac{4}{2} =2 $
| 4x-12+2x=4(2x-1) | | x+7/3=2x+4/4 | | 4x^2+1=45 | | 4|2x+7|−5=15 | | 3(x-7)=2x-10-x | | 10r-7r=18 | | 16-x=24 | | 5x+6+4x+31=180 | | 2(8-(-3x-3)=36x+52 | | 5n=12×28 | | 5+m-3=24 | | -2-12x=-6(2x+2) | | n/48=5/30n=n= | | n/48=5/30n= | | 8x²+96x=0 | | 260=-v+67 | | (10 | | n/48=5/30 | | 15+3x=3x-2+17 | | 2x-12=2(x-4) | | 408=x(.6)+x(.75) | | 4/9=96/n | | y=0.35(0.65) | | 18/11=96/n | | -7-g=25 | | 5a-9=17+3a | | 816/n=17/9 | | -29=-7u+2(u-7) | | 9/27=3n= | | R+4r+r-2r-3r=8 | | 4a-15=7+3a | | -51/2x=5/8x+2 |